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Abstract. The validity of the hyperscaling relation 2A-dv-y = 0 is studied for the four- 
dimensional spin-4 k ing  model. High-temperature series expansions are derived for the 
fourth-field derivative ,Az) of the free energy on the four-dimensional hyper-face-centred 
cubic (HFCC) and hyper-body-centred cubic (HBCC) lattices to order 9 and 11 respectively. 
These are analysed, together with other series already available for the susceptibility KO and 
correlation length E for the HFCC, HBCC and the hyper-simple cubic (HSC) lattices. All 
these series are found to behave consistently with the asymptotic form t-'Iln tip, where t i s  a 
reduced temperature variable and q is the appropriate mean-field exponent (so that 
hyperscaling is satisfied automatically). Our best estimates for p are as follows: p = 
0 . 3 0 i  0.05 (HFCC), 0.32 i 0.05 (HBCC) for ,yo (with q = 1 = y )  and p = 0.33 i 0.05 for 5' 
(with q = 1 = 2v). These estimates are in good agreement with the renormalisation group 
(RG) prediction of p = f. Results for xb2' are more slowly convergent, but are still consistent 
with p = 4 for q = 4 = 2A+ y. 

1. Introduction 

The existence of scaling laws relating critical exponents associated with singularities in 
thermodynamic functions has long been recognised (Fisher 1967, Kadanoff 1966). 
These scaling laws fall into two main categories, namely weak scaling relations, and 
strong or hyperscaling relations which depend explicitly on the spatial dimensionality d 
of the system. We shall, i1i this paper, be concerned with the hyperscaling relation 

2 A - d v - y = O  

for d = 4. Here y and v characterise the singularities in the high-temperature zero-field 
susceptibility ,yo and correlation length [, respectively, while A is the gap exponent 
associated with the high-temperature behaviour of higher-field derivatives of the free 
energy evaluated in zero field. 

One of the earliest studies of the four-dimensional king model was that of Fisher 
and Gaunt (1964), who used a high-temperature series expansion for ,yo to estimate y 
for the hyper-simple cubic (HSC) lattice. Following this work, Moore (1970) derived 
series expansions for ,yo and successive moments M") of the spin-spin correlation 
function for three four-dimensional lattices, namely the hyper-face-centred cubic 
(HFCC), the hyper-body-centred cubic (HBCC) and the HSC lattices. He estimated 

y = 1.065 f 0.003, v = 0 3 3 6  * 0.003. 

The estimate for y ,  though smaller than that of Fisher and Gaunt (1964), is greater than 
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the mean-field value of 1. The estimate for U is also significantly different from 3. Such 
apparent departures of critical exponents from their mean-field values (in d = 4) had 
been attributed (Helfand and Langer 1967, and others) to the presence of logarithmic 
correction terms modifying the dominant power law singularities. Moore (1 970) 
investigated this possibility, but concluded, on the basis of essentially empirical studies, 
that, while the d = 4 series data were suggestive of logarithmic factors, it was not 
possible to distinguish between their effect and any real departure of the exponents 
from their mean-field values. 

More recently, the renormalisation group (RG) approach has been applied exten- 
sively to the study of critical phenomena (Wilson and Kogut 1974, BrCzin et a1 1976). 
This approach implicitly assumes the validity of hyperscaling for d = 2, 3 and 4, and 
predicts that, for d 2 4 ,  all critical exponents assume their mean-field values. It also 
makes detailed predictions about the nature of the logarithmic terms modifying the 
power law singularities in d = 4. According to RG calculations, ,yo, xb” and 6’ possess 
the following asymptotic forms in d = 4: 

where t = 1 - v/u,, and U = tanh(J/kT) is the usual high-temperature variable. (At the 
critical temperature T,, U = U,.) The exponent of the logarithmic term is p = for the 
Ising model. It is easily verified that the hyperscaling relation 2A - du - y = 0 is satisfied 
using the mean-field exponents and d = 4. 

In a recent study, Baker (1977) derived a high-temperature series expansion to 
order v 9  for xb2) on the HSC lattice. Using this, together with the available ,yo and 6 
series, he obtained 

2A - du - y = -0.302 * 0,038. (1.4) 

This result is in conflict with RG theory, and led Baker to suggest that the RG theory as 
implemented at present may not apply to the Ising model. On the basis of series 
extrapolation studies on x!,’)/x0 and xOt4, he concluded that the singularity structure of 
the high-temperature series is more readily accounted for without the inclusion of 
logarithmic terms. 

Gaunt et a1 (1979), using extended series (to order U”) for xo and xi’’ on the HSC 
lattice, found that the series exhibited behaviour consistent with (1.3), and concluded 
that the presence of logarithmic terms could by no means be ruled out. For xo they 
estimated p = 0.33 i 0.07 when y = 1, in good agreement with the RG prediction. 
Though the series for xi” was slowly convergent and proved difficult to extrapolate, 
x!,’)/x0, which according to RG theory should be free of logarithmic terms, did, in fact, 
extrapolate smoothly to give 211 = 2.98, which differs by only 3% from the mean-field 
value. 

In this paper we extend the treatment of Gaunt et a1 (1979) to the other four- 
dimensional lattices, namely the HFCC and HBCC lattices. The series coefficients of xi’) 
have been calculated by using a direct high-temperature star graph expansion for 
$Flap3, where F is the free energy and p the magnetisation variable. The method is 
described in an accompanying paper by McKenzie (1980), and yields a series expansion 
for ,yd*’/x: from which xi2’ can be readily calculated. The xi’’ series for the HFCC and 
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HBCC lattices to order v 9  and U ” ,  respectively, are as follows: 

xi’’ = - 2 ( 1 + 9 6 ~ + 5 5 9 2 ~ ~ + 2 5 6 4 1 6 ~ ~ + 1 0  186 5 3 6 ~ ~  

+367 573 152v5+ 12 377 865 576v6 

+395 650 359 648u7+ 12 141 925 11 1 080v8 

+360 623 634 806 l12v9+ , . .) (1.5) 
and 

xh’’ = -2(1+ 64v + 2448u2+ 73 9 2 0 ~ ~  + 1933 3 6 0 ~ ~  

+45 969 600v5+ 1020 194 928v6 

+21498 942 528v7+435 028 265 0 0 8 ~ ’  

+8520 986 823 232v9+ 162 492 994 362 38411” 

+3030 234 317 201 600v”+ . . .). (1.6) 

We analyse these series together with the available xo and M”’ series (Moore 1970, 
Gaunt et a1 1979) for singularities of the form given in (1.3), using a method devised by 
Guttmann (1978). We assume mean-field exponents (so that hyperscaling holds 
automatically), and determine the exponents p which best fit the series coefficients. We 
find that the fits are best when p is close to i, which is the value predicted by RG theory. 
Deviations from p = 5 and the relatively large uncertainties in our estimates may be due 
(Baker and Golner 1977) to the presence of slowly decaying additive correction terms 
with non-universal amplitudes modifying the dominant singular behaviour given in 
(1.3). 

In 0 2 we analyse the xo series, while our analyses of xi’’ and 5’ are presented in 0 3. 
Our main conclusions are summarised briefly in 0 4. 

2. Series analysis of ,yo 

For both the HFCC and the HBCC lattices, a Pad6 approximant analysis (Gaunt and 
Guttman 1974) of the logarithmic derivative of ~ o ( u )  shows a pole on the positive real 
axis at U = uc, corresponding to the dominant algebraic singularity. For the loose- 
packed HBCC lattice, there is, in addition, a pole on the negative real axis, near U = -uC, 
which corresponds to the antiferromagnetic singularity. For both lattices, there is also 
evidence of a pole-zero sequence along the positive real axis beyond U = vc. This 
suggests a singularity structure more complicated than a simple pole, and is consistent 
with the presence of logarithmic terms as in (1.3). 

Assuming the asymptotic form given in (1.3), we have used a method due to 
Guttman (1978) to determine the value of p which best fits the data, with fixed y = 1. 
Denoting by U,, the coefficient of U “  in xo for the HFCC lattice, we form the ratios 
rn(=ufl/an-l) .  Defining the mimic function f ( u )  by 

u-P*f (U)  = U-’* (1 - u)-’ \ ln( l -  v)IP* = 1 b,vn, 
n a0 

we form the ratios rE(=bn/bfl-l). The ratios r, and r z  are compared by examining the 
sequence R, (= r,/r:). If the asymptotic form given in (1.3) adequately describes ,yo, the 
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sequence R, should tend to U,' with zero slope as n + m, for the correct choice of p* .  
Also, the sequence n(R,u, - 1) should tend to zero as n + 00. Higher-order correction 
terms in n-', C3,, . . can be taken into account by forming linear and quadratic 
extrapolants to R,. 

For the HBCC lattice, we follow a slightly modified procedure which reduces 
interference from the antiferromagnetic singularity at -uc. We transform to a new 
variable x defined by 

This transformation maps the singularity U = -uc to 00, but leaves that at vc unchanged, 
The initial value of vc for performing the transformation may be obtained from ratio 
analysis of xo. Having derived the series in the x variable, we follow the procedure 
outlined above to estimate x c  andp. The true critical point uc is recovered by using (2.2). 

To get some idea of the rate of convergence, we present in table 1 the ratios R,, 
together with their linear and quadratic extrapolants, and the sequences n (R,xc - l ) ,  
together with their linear extrapolants, for the HBCC lattice. We make the estimates 

p = 0.32 * 0.05 (HBCC), -1 u C  = 14*515*0*01, 

vc =21*99*0*01, 
(2.3) 

p = 0.30*0*05 (HFCC). 
-1 

For the HSC lattice, Gaunt et a1 (1979) estimate 

uc-' =6~7315*0~0015 ,  p =0.33*0.07 (HSC). (2.4) 

Table 1. HRCC lattice. Analysis of transformed ,yo series assuming U;' = 14.515 

~~ ~ ~ 

Linear Quadratic Linear 
extrapolant extrapolant n (R,x, - 1) extrapolant 

6 14.4641 
7 14.4813 
8 14,4919 

0'27 9 14.4988 
10 14,5035 
11 14,5068 

6 14,4241 
7 14.4481 
8 14.4637 

14.4474 
10 14.4820 
11 14.4876 

6 14,3838 
7 14,4146 
8 14,4352 

14,4497 
10 14.4603 
11 14,4683 

0.32 

0.37 

14.6118 
14,5843 
14,5663 
14,5541 
14.5456 
143394 

14.6209 
14.5920 
14.5729 
14.5598 
14,5506 
14.5439 

14.6297 
14.5995 
14,5794 
14.5655 
14.5556 
14,5483 

14.5231 
14.5 154 
14.5124 
14.5114 
14,5114 
14.5116 

14.5287 
14,5197 
14.5157 
14,5141 
14.5136 
14.5135 

14,5346 
14,5241 
14.5191 
14.5169 
14.5159 
14.5154 

-0.0210 
-0.0162 
-0.0127 
-0~0100 
-0.0079 
-0.0062 

-0,0376 
-0.0323 
-0.0283 
-0,0252 
-0.0227 
-0.0208 

-0.0542 
-0,0484 
-0,0440 
-0.0405 
- 0.0 3 7 7 
-0,0354 

0,0123 
0,0124 
0.0120 
0.0115 
0.0110 
0.0106 

-0.001 1 
-0.0005 
-0,0004 
-0.0005 
-0.0007 
-0.0009 

-0,0147 
-0,0135 
- 0.0 12 9 
-0,0126 
-0.0125 
-0,0124 
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3. Analysis of ,y? and 6’ 

We use the estimates of uc given in (2.3) and (2.4) obtained from the xo series, and 
calculate p for the xk2’ and t2 series using the method outlined in the previous section. 

The correlation length 5 is defined by 

(3.1) 
where M‘2’ is the second moment of the spin-spin correlation function. We use the Mi2’ 
series given by Moore (1970) to obtain t2 to order olOfor the HFCC lattice and order U’’ 
for the HSC and HRCC lattices. We have also analysed (1+M‘2’ ) /2d~o ,  but find no 
significant improvement in the rate of convergence. 

For all three lattices, the t2 series behaves consistently with the asymptotic form in 
(1.3), and fixing q = 2v = 1 we make the estimate 

p = 0.33 i 0.05. (3.2) 
The sequences R, and n (Rnxc - 1) for the HSC lattice, together with their extrapolants, 
are presented in table 2. 

The xh2) series given in (1.5) and (1.6) have been analysed using the same technique. 
In table 3 we give our results for the HFCC lattice. The sequences R, show a great deal 
of curvature, but Neville table analysis of R, does yield an estimate of u, close to that 
given in (2.3). For p we estimate 

p = 0.32 f 0.05. (3.3) 
From (1.3) we see that, although xo and xb2’ both possess logarithmic correction 

terms, the function xk2’/x0 should be free of logarithms and should exhibit a simple 
power law singularity with an exponent of 3. We therefore form Pad6 approximants to 

Table 2. HSC lattice. Analysis of transformed [* series assuming 0,’ =6.7315. 

Linear Quadratic Linear 
P n R, extrapolant extrapolant n(R,x,-. 1) extrapolant 

5 
6 
7 

9 
10 

5 
6 

0.28 

0.33 

9 
10 

5 
6 
/ 0.38 

9 
10 

6.7232 
6.7320 
6.7364 
6.7386 
6.7396 
6.7400 

6.6984 
6.7121 
6.7199 
6,7245 
6,7274 
6,7293 

6,6766 
6.6946 
6.7053 
6.7121 
6.7167 
6.7198 

6.7987 
6.7763 
6.7625 
6,7536 
6.7477 
6.7435 

6.8042 
6,7809 
6,7664 
6.7569 
6.7505 
6,7460 

6.8087 
6.7848 
6.7697 
6.7598 
6,7530 
6.7482 

6,7415 
6.7314 
6.7280 
6.7270 
6.7268 
6.7268 

6.7456 
6.7343 
6,7301 
6.7286 
6.7281 
6,7279 

6.7493 
6.7368 
6.7320 
6.7301 
6,7293 
6,7289 

-0.0062 
0.0005 
0.005 1 
0.0084 
0.0108 
0.0126 

-0.0246 
-0.0173 
-0.0121 
-0,0083 
-0,0055 
-0.0033 

-0.0408 
-0.0329 
-0.0272 
-0.0230 
-0.0198 
-0,0173 

0.0338 
0.0338 
0.0327 
0.0314 
0.0300 
0.0286 

0.0186 
0.0194 
0.0190 
0.0182 
0,0172 
0.0161 

0.0051 
0.0067 
0.0068 
0.0064 
0,0058 
0,0050 
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the logarithmic derivative of xb2)/xo, and these are presented in table 4. The estimates 
of uc are consistent with (2.3), for both lattices, and the exponents are close to 3. 

The critical amplitudes A,  B and D for the HFCC lattice have been estimated by 
evaluating, at y = 1, the Pad6 approximants to the series for 

y 1 / 3 ~ ( y ) ( 1  -y)‘Iln(l - Y ) I - ” ~ ,  (3.4) 
where y = v / u 0  F ( y )  denotes the xo, xd” or c2 series in the y variable, and q is the 
appropriate mean-field exponent. For the loose-packed lattices, we have followed an 
analogous procedure after first transforming to the x variable defined in (2.2). Our 

Table 3. HFCC lattice. Analysis of xi2’ series assuming U,’ = 21.99. 

4 22.2995 
5 22.2118 
6 22.1544 

22.1153 
8 22,0876 
9 22.0673 

4 22.2431 
5 22,1637 

0.28 

6 22.1127 
22.0785 0.32 

8 22,0547 
9 22.0377 

4 22.1869 
5 22,1158 
6 22.0711 

22.0418 0.36 

8 22.0220 
9 22.0082 

Linear Quadratic 
extrapolant 

21.8734 
21.8609 
21.8679 
21.8803 
21.8934 
2 1.9054 

extrapolant 

21.8027 
21.8423 
21.8817 
21.9115 
21.9326 
21.9475 

Linear 
n(R,u,- 1) extrapolant 

0.0563 0.0404 
0.0504 0,0269 
0.0449 0.0171 
0.0399 0.0099 
0.0355 0.0047 
0.0316 0.0009 

21.8515 21.7932 0.0460 0.0271 
21,8462 21.8384 0.0395 0,0134 
21.8577 21,8807 0.0335 0.0014 
21,8732 21,9119 0.0282 -0.0037 
21,8883 21.9338 0.0236 -0.0088 
21.9018 21,9490 0,0195 -0.0125 

21.8294 21.7835 0.0358 0.0139 
2 1.83 14 21.8345 0.0286 -0.0002 
21.8475 21,8795 0.0221 -0.0103 
21.8660 2 1.9 122 0.0165 -0.0174 
21.8832 21,9348 0.0116 -0.0224 
21.8981 21.9505 0,0075 -0.0260 

Table 4. D log Pade analysis of xb2)/x0 series for ( a )  HFCC and (6)  HBCC lattices. 

( a )  HFCC lattice 
n [ n - l / n ]  [n ln l  

2 21,8706 (-3.044) 21,9589 (-3.002) 22.0083 (-2.972) 
3 22.0181 (-2,964) 22.0016 (-2,977) 21,9822 (-3.000) 
4 21.9946 (-2.983) 21.9919 (-2.986) 

( b )  HBCC lattice 
n [ n - l / n ]  [n ln l  [n + l / n l  

2 14.3846 (-3.102) 14.3013 (-3.154) 14,5693 (-2.934) 
3 14.3640 (-3,111) 14.5072 (-2.993) 143215 (-2.977) 
4 143286 (-2.968) 14.5193 (-2,980) 14,6115 (-3.713)f 
5 14.5164 (-2.984) 14.5133 (-2.990) 

i- Defective approximant (Gaunt and Guttmann 1974). 
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estimates of the critical amplitudes for all three lattices are presented in table 5 .  These 
values were calculated using the central uc in (2.3) and (2.4). Uncertainties in uc 
produce further uncertainties in the amplitudes of the same order as the confidence 
limits quoted in table 5 .  However, the presence of the additive correction terms 
referred to at the end of 8 1 may mean that our estimates (table 5 )  are ‘effective’ 
amplitudes rather than the dominant ones. 

Table 5. Critical amplitudes. 

Lattice A B D 

HSC 0.91i0.01 2.30*0,07 05374rt0.003 
HBCC 0.81*0.02 2.02zk0.08 0,238*0.004 
HFCC 0.85*0.02 2.18i0.07 0 ~ 2 0 0 ~ 0 ~ 0 0 2  

4. Conclusions 

We have investigated high-temperature series expansions for ,yo, ,yb2’ and t2 for three 
different lattices for the d = 4 Ising model, and found them consistent with the 
asymptotic forms predicted by RG theory. Specifically, we have assumed mean-field 
critical exponents, so that the hyperscaling relation 2A - dv - y = 0 is satisfied automa- 
tically, and estimated the exponents p pertaining to the confluent logarithmic correction 
terms. Our estimates for p are in reasonably close agreement with the value of 5 
predicted by RG theory. 
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